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Abstract - Moderate Resolution Imaging 
Spectroradiometer (MODIS) data are collected from the 
Terra satellite at a rate of 11 megabits/second.  These data 
are to be transmitted to earth, stored, and analyzed by 
various algorithms. One solution to reducing the 
bandwidth and storage need for these data is to apply 
wavelet-based compression, which is known to provide 
good performance.  We present a controlled study that 
shows the effect of data compression on cloud cover 
classification of MODIS data.  We find that cloudcover 
calculations can tolerate very large compression ratios.  
The correlation between frequency bands can be used to 
compress MODIS images even further. 

1  BACKGROUND 

1.1 Data compression 

Data compression is becoming increasingly common in 
modern computer and communication systems.  As 
processing power increases faster than bandwidth, it becomes 
cost effective to compress the data stream to more effectively 
use available communication resources. 

Compression removes redundancy in data.  There are 
many standard ways to do this, including signal transforms to 
transform the data into a domain where redundancy is more 
easily discerned; building statistical models of the data; and 
entropy encoding the data.  For a good overview of general 
data compression algorithms see [1]. 

In recent years, the wavelet transform has been used 
extensively to compress image and video data.  Several 
codecs have been developed around wavelets, including EZW 
[11], SPIHT [4], GTW [8] and JPEG 2000 [9]. Wavelet 
transforms are lossless transforms that project time series data 
onto wavelet basis functions, producing a time-frequency 
signal representation.  For further reading on wavelets, an 
excellent introduction is [2].  A very mathematical 
introduction can be found in [3]. 

The wavelet transform of an image is performed by 
applying two-dimensional high pass and low pass filters to 

yield a quarter-sized low resolution subimage and three 
quarter-sized detail coefficient subimages.  The low 
resolution image is then recursively filtered as many times as 
desired. The wavelet coefficients contain all the information 
of the original image, but much more compactly. The original 
image can be recovered from the transformed image using 
inverse filters. There are a number of effective wavelet filters 
that are used in practice; one of the most popular is the 
Daubechies biorthogonal 9/7 filter [12]. When a wavelet 
transform is applied to a natural image, the energy of the 
image tends to be concentrated in a very small portion of the 
wavelet coefficients.  This lends itself well to many types of 
subsequent encoding 

Essentially all the wavelet compression algorithms use 
bit-plane encoding.  That is, each wavelet coefficient is 
represented by a signed b bit number.  Bit-plane encoding  
first encodes the most significant bit of all the coefficients, 
then the next most significant bit of all the coefficients, and 
so on.  The sign of a coefficient is encoded only when it is 
needed (in the first bit-plane where the bit of the coefficient is 
a 1).  Lossy compression is achieved by truncating the 
encoded sequence at some point.  Every prefix of the 
encoding can be decoded into a lower quality version of the 
original image. 

 The algorithm used in this work is Set Partitioning in 
Hierarchical Trees (SPIHT) [4]. SPIHT has excellent rate-
distortion performance and is fast as a sequential program.  In 
addition, it can be parallelized for implementation on an 
FPGA (Field Programmable Gate Array), which means it has 
great potential for use on satellites [13]. 

1.2.  Data Sets 

The data used are from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument. MODIS is designed 
to collect 50 wavelengths of light, but the only satellite 
currently in orbit collects 36 wavelengths.  The resolution of 
the data ranges from 250 m to 1000 m pixels, depending on 
which wavelengths are being recorded.  Each pixel is 
represented in 16 bits although the precision of the sensor is 
only 12 bits. The data sets used in these experiments come 
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from the MODIS airborne simulator (MAS).  The MAS 
flights were test flights aboard NASA U2s to test the MODIS 
prior to launch and to provide data from which to develop 
analysis algorithms.  The smaller data set is from flight 96-
108 and is 810x716 pixels and 50 bands.  This set consists 
mostly of flat farmlands with some lakes and a 20% cloud 
cover, as can be seen in figure 2.  The second set is from 
MAS flight 97-045 track 6, and is a mixture of snow, ice, and 
rock.  This set has about 1% cloud cover.  This set is much 
larger at 12,490x716 pixels and 50 bands. 

1.3 Analysis algorithms: 

The analysis algorithms applied to the MODIS data are 
usually computationally very simple because the amount of 
data from the satellite is so great. The analysis mostly 
consists of taking ratios of sums and differences between 
bands to form indexes to indicate the level of some property.  
For example, there is a vegetation index measuring the 
amount of vegetable matter in the area represented by the 
pixel, a snow index indicating how much snow is there, etc.  
These indexes are analyzed with simple rules to classify 
pixels. 

A cloudmask program [5] designed for the MAS data is 
used to analyze the data (the implementation is the University 
of Wisconsin cloudmask program version release-2-0 
(8/1998)). The algorithm uses 12 bands of the image to 
identify cloud-obstructed pixels.  It also attempts to 
determine the type of cloud and whether a pixel is in a cloud 
shadow.  To narrow down the information, the “Unobstructed 
FOV Quality Flag” is the only data field that we examine. 
This field is two bits, and gives 4 readings: Cloud, 66% 
probability clear, 95% probability clear, and 99% probability 
clear. 

1.4 Goal of Studies: 

We will study the effects of wavelet compression on the 
analysis of the data using several tools.  Our analysis will be 
performed using the cloudmask algorithm.  A pixel will be 
considered to have changed classification if and only if the 
“Unobstructed FOV Quality Flag” field is different between 
the analysis of the compressed data and the analysis of the 
original data.  This provides a simple test for error, and is 
main classification result of the cloudmask algorithm.  To 
compress the data, we use the SPIHT algorithm.   

2  STUDIES 

2.1 Equal Rate Individual Band Compression 

The first study was designed to test the effects of wavelet 
compression on the results of the cloud cover analysis.  First, 
each band was extracted from the data set.  Then each band 
was compressed using SPIHT to the same bit rate. The data 
set was analyzed with the cloudmask algorithm and the 

results compared with the results of the original analysis.  All 
changes in the "Unobstructed FOV Quality Flag" 
classification of pixels were tracked. 

The results were very satisfactory.  As can be seen in 
figure 1, for the large data set, the error is under 5% for bit 
rates above 0.1 bpp.  Large portions of the error are changes 
in certainty of 1 step, such as “cloud” to “66% probability 
clear”, or “95% probability clear” to “99% probability clear”.  
Other data sets yielded similar results. 
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Figure 1. Incorrect Classification in Larger Data Set 

 

We now examine the resulting cloudmasks for the smaller 
data set.  Figure 2 shows from left to right, the original 
cloudmask, the cloudmask at 0.1 bpp, and the pixels where 
these two images disagree.  In the first two images, red 
represents clouds, green represents 66% probably clear, black 
represents 95% probably clear and white represents 
99%probably clear.  It is clear that the errors are concentrated 
around the edges.  The most common artifact of wavelet 
compression on images is edge blurring and loss of texture.  
It is important to note that no blocking occurred and there are 
no large changes in classification away from the edges. 

2.2 Cloudmask Optimized Bit Assignment 

The second study was designed to optimize the accuracy 
of the cloudmask analysis by variable allocation of bits 
between bands, while still maintaining a constant average bit 
rate.  Some of the motivation for this comes from the later 
experiment dealing with the PSNR of different bands.  
Further motivation comes from the assumption that not all 
bands are equally important to the cloudmask algorithm.  In 
fact, it uses only 12 of the 50 bands, but even within those, 
they are not equally important. 

An exhaustive search of all possible bit rate assignments 
would require finding the minimum of a function of 12 
dimensions.  Since this is computationally infeasible, several 
solutions were considered.  A classic solution to this problem 
is simulated annealing.  Unfortunately, each test takes 
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considerable time (on the order of minutes) so something 
simpler was needed. 

We chose an average bit rate of 1 bpp and a minimum bit 
rate of .5 bpp.  Then, setting all bands but one to the 
minimum bit rate, we allocated all extra bits to the one 
selected band.  By thus restricting the degrees of freedom to 
1, an optimal solution could be found under this constraint.  
The results show the analysis only benefited when extra bits 
were assigned to bands 1, 31, and 45, with band 31 giving 
50% less error than average.   

We then repeated the process, splitting the extra bits into 
two equal sized chunks, and assigning those to all pairs of 
bands.  All combinations that performed better than average 
then had the bit rates varied between the two relevant bands.  
This allowed an efficient way to find a good solution to the 
problem with three degrees of freedom (the two bands, and 
the way the bits are divided among them).  We discovered 
that bands 31 and 45 are by far the most important bands for 
the calculation of the cloudmask.  The optimal assignment of 
bits between these bands is very close to even assignment, 
and gave an error of less than 1%.  In contrast, equal 
assignment of bit rates to all bands gave an error of about 
2.3%, so uneven assignment of bit rates between bands did 
give significantly better results for cloudmask analysis. 

Unfortunately, this only tests the sensitivity of the 
cloudmask algorithm on this particular data set and does not 
give sufficient insight on the effects of compression to the 
analysis of these data sets.  A larger variety of analysis 
algorithms are required to determine an optimal bit 
assignment. 

2.3 PSNR of Each Band 

Since the cloudmask algorithm was not sufficient to 
gauge the sensitivity of the bands to wavelet compression, a 
more general approach was needed.  We therefore plotted the 
peak signal-to-noise ratio (PSNR) of each band as we varied 

the bit rate. 

The PSNR graph for the smaller data set is shown in 
figure 3.  This is very similar to the PSNR graph for the 
larger data set, as expected.  Interestingly, there are two 
bands in this data set, and three in the larger data set, with 
very low PSNR.  These are likely some of the 14 bands 
dropped from the MODIS instrument when it was launched.  
The real MODIS data sets have only 36 bands. 

The PSNR values may seem high for image compression, 
since normally values range from 20db to 40db.  The reason 
for this is that there was sensor noise in the two bands with 
low PSNR.  This meant the maximum value used in the 
PSNR calculations was 215 rather than 212.  The effect is that 
the PSNR of most of the bands is effectively shifted upwards, 
since the error relative to a range of values of 215 is much 
smaller than the error relative to the actual sensor range of 212  
Also, a PSNR of 140 on figure 3 indicates the image was 
identical to the original. 
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Figure 3. PSNR of larger data set 

 

Figure 2. Resulting Cloudmasks: original, .1 bpp, pixels that differ 
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The PSNR graphs are consistent with the cloudmask 
graphs.  The PSNR steadily decreases as the bit rate 
decreases, until about 0.2 bpp.  At this point the PSNR 
rapidly decreases.  Interestingly, the majority of bands fall 
within a 20 db range for a given bit rate, which is a 
significant amount of difference.  This suggests that a good 
algorithm may be to compress each band to a bit rate that 
corresponds to a fixed PSNR, rather than compressing to a 
fixed bit rate. 

2.4 Actual Prediction Ability of Simple Predictor 

Another way to improve compression performance is to 
take advantage of the correlation between spectral bands by 
using predictive coding.  If an optimal band ordering, based 
on minimizing the compressed size of the resultant image, 
could be determined, compression results would be further 
improved [10].  However, this is another NP-complete 
problem, so we instead examine how well each band can 
predict another, without finding the optimal ordering. 

Using bzip2 we determine the compressed size of files 
containing the difference between bands.  Bzip2 is a standard 
Unix compression tool utilizing the Burrow-Wheeler 
transform [6, 7], move-to-front, run-length, and Huffman 
encoding.  Figure 4 shows the sizes of the band differences.  
The diagonal, which is near zero, is ignored in the figure to 
make the rest of the differences more visible. 
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Figure 4. Compressed size in bytes of band differences in 
small data set.  Lighter indicates smaller compressed 
differences. 

Given these sizes, an ordering of the input bands needs to 
be determined to minimize the total compressed size of all 
bands.  This is the same minimization problem as before, and in 

the general case, too computationally intensive to easily solve.  
We calculated some partial orderings, but not a full ordering of 
the bands.  

3  CONCLUSION 

SPIHT compression is shown to be suitable for MODIS 
data in that it does not introduce significant error in 
cloudmask analysis of these data.  At high bit rates such as 6 
bpp, very little error is introduced into the analysis 
algorithms, and still a substantial saving is achieved from the 
raw 16 bpp.  At lower bit rates such as 1 bpp, the cloudcover 
classification accuracy is still very high with less than 5% 
error introduced as a result of the compression. 

There is a high amount of redundancy between bands that 
can be exploited to improve compression ratios further, or 
allow for efficient lossless encoding.  Some reordering of the 
bands is necessary to take full advantage of this redundancy. 

Several areas remain to be studied.  Most prominent is 
compressing the bands to an equal PSNR rather than bit rate.  
Also, much of the analysis needs to be replicated using 
algorithms besides the cloudmask to ensure the soundness of 
the results. 
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